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TP Mathematica 6 : ALGORITHMES CLASSIQUES

1) Algorithme d’Euclide avec calcul des coefficients de Bézout.

Voir cours d’arithmétique.

En faire une version itérative et une version récursive.

2)  Algorithme de détermination de la primalité d’un naturel.

Rappeler pourquoi un entier n est premier ss’il ne possède aucun diviseur entre 2 et ………..

Écrire une procédure estpremier[n_] qui aura la même fonction que PrimeQ. Comparer les temps de calcul entre estpremier  et PrimeQ. Modifier estpremier en une fonction  pluspetitdiviseurpremier.

3) Algorithme de détermination de la liste des nombres premiers de 2 à n, dit algorithme du crible d’Eratosthène.

Rappel du principe :


a) partir de la liste L des entiers de 2 à n.


b1) barrer dans cette liste tous les éléments qui sont multiples stricts du premier terme


b2) barrer dans la liste obtenue tous les éléments qui sont multiples stricts du deuxième terme.


…


bk) barrer dans la liste obtenue tous les éléments qui sont multiples stricts du k-ième terme.


c) s’arrêter lorsque le k-ième terme a un carré > n.

La liste L modifiée comporte alors tous les nombres premiers de 1 à n.

Écrire une procédure  listepremiers[n_] qui donne la liste des nombres premiers de 1 à n.

Pour barrer dans la liste, vous utiliserez  « Complement» .

4) Algorithme de décomposition d’un naturel dans une base.

Principe : si 
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 est le quotient dans cette division.

Écrire une procédure (récursive ou non)  dec[n_,b_] retournant la liste des chiffres de n dans la base b. Utiliser « Quotient » et « Mod ».

5) Algorithme d’exponentiation rapide itératif (cf TP 5)


a) Principe de l’algorithme d’exponentiation rapide.

Il consiste à décomposer n en somme de puissances de 2 (autrement dit à écrire n en base 2) et d’en déduire un calcul de an par une suite d’élévations au carré successives.

Par exemple 
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L’algorithme s’effectuera de la manière suivante :

	divisions successives de n par 2
	100
	50
	25

impair
	12
	6
	3

impair
	1

impair

	élévations successives de a  au carré 
	a
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	résultat
	1
	1
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Écrire une procédure itérative expo[a_,n_] retournant an  et utilisant cet algorithme.


b) Appliquer la méthode de l’exponentiation rapide pour obtenir le reste de la division de 
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 par 101.

6) La bonne vieille division.
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Programmer une fonction f[a_,b_,k_] qui retourne une liste formée de la partie entière du quotient de a par b, puis les k premières décimales du quotient (par exemple, f(22,7,5)=[3,1,4,2,8,5]) ; les seules fonctions autorisées sont 
[image: image20.wmf],,
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 , Quotient et Mod.

7) L’extraction de racines carrées.

	[image: image25.png]





Programmer une fonction f[n_,k_] qui retourne la liste formée de la partie entière du quotient de la racine carrée de n, puis de ses k premières décimales ; les seules opérations autorisées sont 
[image: image21.wmf],,
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8) Algorithme de division euclidienne des polynômes.

A et B étant donnés, déterminer Q et R.

Degré d’un polynôme : Exponent[1+X^2,X]  donne 2

Terme de plus haut degré d’un polynôme : Last[3X^2+3X+1] donne 3X^2

9) Algorithme de Horner pour calculer les valeurs d’un polynôme.

Principe : 
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Écrire une procédure  itérative horner[a_,x_,n_] qui retourne 
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Comparer les temps de calcul avec un calcul normal (pour le test prendre 
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Tenter une procédure horner récursive.

10) Algorithme glouton pour la décomposition d’un rationnel > 0 en somme de fractions égyptiennes.

Principe : retrancher la plus grande fraction égyptienne inférieure ou égale à x  et recommencer jusqu’à ce qu’on obtienne zéro.

Écrire une procédure, récursive ou non,  glouton[x_] qui retourne la liste des fractions égyptiennes obtenues par cet algorithme ; leur somme doit être égale à x.

Exercice : démontrer que cet algorithme se termine toujours.

Autres algorithmes, pour mémoire : 

- algorithmes de tri (cf. TP 5), 

- algorithme de calcul approché d’une solution d’une équation par dichotomie.

- algorithme du pivot de Gauss pour la résolution d’un système linéaire.

-algorithme de Schmidt pour la détermination d’une base orthonormée. 
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